Math, asked by wmachine696, 4 months ago

If ((x²-9)/(x²+3)) = 4/7 , then x is:​

Answers

Answered by smosan75
7

Answer:

Given equation : \dfrac{x^{2}-9}{x+3}=\dfrac{4}{7}

x+3

x

2

−9

=

7

4

\dfrac{x^{2}-3^{2}}{x+3}=\dfrac{4}{7}

x+3

x

2

−3

2

=

7

4

We can factorize x^2 - 3^2 by the identity a^2 - b^2 = ( a + b )( a - b ) where we can assume a as x and b as 3. So, x^2 - 3^2 = ( x + 3 ) ( x - 3 ).

\dfrac{(x+3)(x-3)}{x+3}=\dfrac{4}{7}

x+3

(x+3)(x−3)

=

7

4

( x - 3 ) = \dfrac{4}{7}

7

4

7( x - 3 ) = 4

7x - 21 = 4

7x = 4 + 21

7x = 25

x = 25 / 7

Therefore the value of x satisfying the equation is 25 / 7 .

Step-by-step explanation:

if it helps please mark me brainliest

Answered by MrHyper
8

\huge\bf{{\color{navy}{a}}{\color{indigo}{n}}{\color{blue}{s}}{\blue{w}}{\color{skyblue}{e}}{\color{lightblue}{r}}}

\small{ }

\huge\sf{{\underline{\underline{To~solve~:}}}}

 \sf \frac{ {x}^{2} - 9 }{ {x}^{2} + 3 }  =  \frac{4}{7}  \\  \sf By \: cross \: multiplication, \: we \: get:  \\  \sf 7( {x}^{2}  - 9) = 4( {x}^{2}  + 3) \\  \sf 7 {x}^{2}  - 63 = 4 {x}^{2}  +12 \\  \sf 7 {x}^{2}  - 4 {x}^{2}  = 12 + 63 \\ \sf 3 {x}^{2}  = 75 \\  \sf  {x}^{2}  =  \frac{75}{3}  \\  \sf  {x}^{2}  = 25 \\  \sf x =  \sqrt{25 }  \\  \sf x = 5

\small{ }

\huge\bold{{\color{navy}{Hope}}~{\color{blue}{it}}~{\color{skyblue}{helps..!!}}}

Similar questions