Math, asked by koushiksharma84711, 1 month ago

If x²=au + bu, y² =au - bv, prove that (du/dx)y.(dx/du)v=1/2=(dv/dy)x.(dy/dv)u​

Answers

Answered by junita07
8

Answer:

Please refer to the image attached

Attachments:
Answered by brokendreams
4

Step-by-step explanation:

Given:x^{2} =au + bu, y^{2}  =au - bv

To prove:(\frac{2v}{2y})x . (\frac{2y}{2v})u = \frac{-b}{2y} . \frac{-y}{b} = \frac{1}{2}

For proving the above equations,

Let's assume that x^{2} = au+bv (I) and y^{2}=au-bv (II)

Differentiating equation I w.r.t. 'u' and keeping 'v' constant,

\frac{2x^{2} }{2u} = \frac{2(au)}{2u} + 0

\frac{2x^{2} }{2u} \frac{2x}{2u} = a ; or \frac{2x2x}{2u} = a

(\frac{2x}{2u})v = \frac{a}{2u}

bv=x^{2} - au ; or bv=au-y^{2}

x^{2} -au=au-y^{2}

Thus, we have  2au=x^{2} + y^{2} (III)

Differentiating equation III w.r.t. 'x' and keeping 'y' constant,

\frac{2(2au)}{2u} \frac{2u}{2x} = 2x+0 ;

2a \frac{2u}{2x} = 2v

(\frac{2u}{2x}) y = \frac{x}{a};

(\frac{2u}{2x}) y . \frac{2x}{2u} v= \frac{1}{2}

Differentiating equation III w.r.t. 'v' and keeping 'u' constant,

\frac{2y^{2} }{2v} = \frac{2(au)}{2v} - \frac{2(bv)}{2v} ;

\frac{2y^{2} }{2y} . \frac{2y}{2v} = 0-b ; or 2y\frac{2y}{2v} = -b;

(\frac{2y}{2v})u=\frac{-b}{2y}

From equations II and I, we have x^{2} - bv= y^{2} + bv ; or x^{2} - y^{2} =2bv (IV)

Differentiating equation IV w.r.t. 'y' and keeping 'x' constant,

-2y= \frac{2(2bv)}{2y} ; or -2y=\frac{2(2bv)}{2v} = \frac{2v}{2y}

-2y =2b \frac{2v}{2y} or (\frac{2v}{2y})x = \frac{-y}{v}

(\frac{2v}{2y})x . (\frac{2y}{2v})u = \frac{-b}{2y} . \frac{-y}{b} = \frac{1}{2}

Hence, proved (\frac{2v}{2y})x . (\frac{2y}{2v})u = \frac{-b}{2y} . \frac{-y}{b} = \frac{1}{2}.

Similar questions