Math, asked by adi455, 1 year ago

if x2+xy+x=12 and y2+xy+y=18 find x+y

Answers

Answered by mysticd
15
Hi ,

x² + xy + x = 12 ----( 1 )

y² + xy + y = 18 ----( 2 )

add equations ( 1 ) and ( 2 ) , we get

x² + 2xy + y² + x + y = 30

( x + y )² + ( x + y ) - 30 = 0

( x + y )² + 6( x + y ) - 5( x + y ) - 30 = 0

( x + y ) [ x + y + 6 ] - 5 ( x + y + 6 ) = 0

( x + y + 6 ) ( x + y - 5 ) = 0

Therefore ,

x + y + 6 = 0 or x + y - 5 = 0

x + y = -6 or x + y = 5

I hope this helps you.

: )

abhi569: Congratulations sir... 6000+ answers in Maths..... ...
mysticd: Thank you. Abhi
abhi569: (-:
Answered by abhi569
8
x^2 + xy + x = 12          ----------------1equation


y^2 + xy + y = 18 ------------2equation

===========================

Adding both the equations,

x^2 + xy + x + y^2 + xy + y = 12 + 18

x^2 + y^2 + xy + xy + x + y = 30

(x + y)^2 + 1(x + y) = 30


Assume (x + y) as a

a^2 + a = 30

a^2 + a - 30 = 0

a^2 + (6 - 5)a -30 = 0

a^2 + 6a -5a - 30 = 0

a(a + 6) - 5(a + 6) = 0

(a + 6) (a -5) = 0

a = - 6   Or   a = 5 
x + y = -6   Or   x + y = 5 



i hope this will help you


-by ABHAY
Similar questions