If x2 + xy + y = 84 & x - / xy + y = 6 , then find x + y . यदि x2 + xy + y = 84 और x - / xy + y = 6 है , तबx y का मान क्या होगा ?
Answers
Answer:
Required value of x^3 + y^3 is 520.
Step-by-step explanation:
Given,
x^2 + xy + y^2 = 84 ...( 1 )
Also, x - √xy + y = 6
= > x - √xy + y = 6
= > x + y = 6 + √xy
= > ( x + y )^2 = ( 6 + √xy )^2
= > x^2 + y^2 + 2xy = 36 + xy + 12√xy
= > x^2 + y^2 + 2xy - xy = 36 + 12√xy
= > x^2 + y^2 + xy = 36 + 12√xy
= > 84 = 36 + 12√xy { from ( 1 ) }
= > 48 = 12√xy
= > 4 = √xy
Thus,
= > x - √xy + y = 6
= > x - 4 + y = 6
= > x + y = 10 ...( 2 )
Substituting the value of√xy in ( 1 ) :
= > x^2 + xy + y^2 = 84
= > x^2 + 2xy - xy + y^2 = 84
= > x^2 - xy + y^2 + 2xy = 84
= > x^2 - xy + y^2 + 2( 4 )^2 = 84
= > x^2 - xy + y^2 + 32 = 84
= > x^2 - xy + y^2 = 52 ...( 3 )
We know,
a^3 + b^2 = ( a + b )( a^2 - ab + b^2 )
Therefore,
= > x^3 + y^3
= > ( x + y )( x^2 - xy + y^2 )
= > ( 10 )( 52 ) { from ( 2 ) and ( 3 ) }
= > 520
Hence the required value of x^3 + y^3 is 520.
Information is given that :-
x² + xy + y² = 84 ........... (1)
Here,
x - √xy + y = 6
x - √xy + y = 6
x + y = 6 + √xy
(x + y)² = (6 + √xy)²
x² + y² + 2xy = 36 + xy + 12√xy
x² + y² + 2xy - xy = 36 + 12√xy
x² + y² + xy = 36 + 12√xy
From (1) we have,
84 = 36 + 12√xy
48 = 12√xy
4 = √xy
Thus,
x - √xy + y = 6
x - 4 + y = 6
x + y = 10 ............. (2)
Putting value of√xy in (1) :
x² + xy + y² = 84
x² + 2xy - xy + y² = 84
x² - xy + y² + 2xy = 84
x² - xy + y² + 2(4)² = 84
x² - xy + y² + 32 = 84
x² - xy + y² = 52 .......... (3)
Therefore,
= x³ + y³= (x + y)(x² - xy + y²)
From (2) and (3)
= 10 × 52
= 520
Therefore,
Required value is 520