Math, asked by rajmth8402, 10 months ago

If x2+y2=14xy then prove that log(x+y)/4=1/4x+1/4y

Answers

Answered by mysticd
0

 Given \: x^{2} + y^{2} = 14xy

/* Add bothsides of the equation by 2xy, we get */

\implies x^{2} + y^{2}  + 2xy = 14xy + 2xy

 \implies ( x + y )^{2} = 16xy

 \implies \big(\frac{ x + y }{4}\big)^{2} = xy

 \implies log \big(\frac{x + y }{4}\big)^{2} = log (xy)

 \implies 2log \big(\frac{ x + y }{4}\big) = log x + log y

 \implies log \big(\frac{x + y }{4}\big) =\frac{1}{2}\big( log x + log y\big)

 \implies log \big(\frac{( x + y )}{4}\big) =\frac{1}{2}  log x + \frac{1}{2} log y

•••♪

Similar questions