Math, asked by Sunny3319v, 1 year ago

If x² + y2 = 27xy, then show that log (x-y/5) =1/2 [ log x + log y]​

Answers

Answered by Anonymous
151

\underline{\large{\sf To    \:Prove :}}

\sf log (\frac{x-y}{5})=\frac{1}{2}[ log x + log y]

\underline{\large{\sf Proof :}}

\sf x^2+y^2=27xy --------------(Given)

\sf x^2+y^2 = 25xy + 2xy

\sf x^2-2xy+y^2=25xy

{from identity,\sf(a-b)^2=a^2-2ab+b^2}

\sf (x - y)^2 = 25xy

\sf \frac{(x - y)^2}{25} = xy

\sf (\frac{x-y}{5})^2 = xy

taking square root on both the sides

\sf (\frac{x-y}{5})=(xy)^{\frac{1}{2}}

Now, taking log on both the sides

\sf log (\frac{x-y}{5})=log(xy)^{\frac{1}{2}}

we know,  \sf log_{e}( {m}^{n} )  = n log_{e}(m)

\sf log (\frac{x-y}{5})=\frac{1}{2} log(xy)

\sf log (\frac{x-y}{5}) =\frac{1}{2}(logx + logy) ........

...{since,\sf log_{e}(mn)  =  log_{e}(m)  +  log_{e}(n) }

therefore,

\boxed{\sf log (\frac{x-y}{5})=\frac{1}{2}[ log x + log y]}

Hence proved.

Similar questions