Math, asked by ghoshanandita25, 2 months ago

If x²+y²=34 and xy=10 whole 1/2 find the value of 2(x+y)²+(x-y)²​

Answers

Answered by Sagar9040
2

Solution:

It is given that,

x²+y² = 34 ----(1)

xy = 10½ = 21/2 ---(2)

Value of 2(x+y)²+(x-y)²

= (x+y)² + [(x+y)²+(x-y)²]

= x²+y²+2xy + 2(x²+y²)

= 34 + 2×(21/2)+2×34

= 34 + 21 + 68

= 123

•••

Answered by silviya120
1

x^{2} +y^{2} = 34\\xy = 10\frac{1}2}=\frac{21}{2}   \\we  know,\\(x+y)^{2} = x^{2} +2xy+y^{2} \\

             = x^{2} +y^{2} +2×\frac{21}{2}

             = 34 + 21

             =55

(x-y)^{2}=x^{2} -2xy+y^{2}

             = x^{2} +y^{2}-2×\frac{21}{2}

             =34-21

             =13

Now,

2(x+y)^{2}+(x-y)^{2}\\

= 2×55 + 13

= 110+13

=123

Similar questions