Math, asked by nakshatrashetty, 2 months ago

volume of a sphere is 40cm³ find the volume of a hemisphere having the same radius​

Answers

Answered by AestheticSoul
3

Given :

  • Volume of a sphere = 40 cm³
  • Radius of sphere = Radius of hemisphere

To find :

  • Volume of hemisphere

Solution :

Radius of sphere :-

Formula of volume of sphere :-

 \\  \twoheadrightarrow \sf Volume  \: of  \: sphere = \dfrac{4}{3} \pi r^3

where,

  • Take π = 22/7
  • r denotes the radius of the sphere

Substituting the given values,

 \\  \twoheadrightarrow \quad \sf 40 = \dfrac{4}{3} \times  \dfrac{22}{7} \times  r^3

Transposing 4/3 and 22/7 to the left hand side. On transposing the fraction the denominator wil become numerator and the numerator will become denominator.

 \\  \twoheadrightarrow \quad \sf 40 \times  \dfrac{3}{4} \times  \dfrac{7}{22}=   r^3

 \\  \twoheadrightarrow \quad \sf \!\!\!\not40 \times  \dfrac{3}{ \!\!\!\not4} \times  \dfrac{7}{22}=   r^3

 \\  \twoheadrightarrow \quad \sf 10 \times 3 \times  \dfrac{7}{22}=   r^3

 \\  \twoheadrightarrow \quad \sf \!\!\!\not10 \times 3 \times  \dfrac{7}{\!\!\!\not22}=   r^3

 \\  \twoheadrightarrow \quad \sf 5 \times 3 \times  \dfrac{7}{11}=   r^3

 \\  \twoheadrightarrow \quad \sf \dfrac{105}{11} =   r^3

 \\  \twoheadrightarrow \quad \sf \dfrac{\!\!\!\not105}{\!\!\!\not11}=   r^3

 \\  \twoheadrightarrow \quad \sf 9.545=   r^3

Taking cube root on both the sides.

 \\  \twoheadrightarrow \quad \sf  \sqrt[3]{ 9.545}=   r

 \\  \twoheadrightarrow \quad \sf  2.121=   r

Radius of the sphere = 2.121 cm

Radius of the sphere = Radius of the hemisphere

Radius of the hemisphere = 2.121 cm

Formula to calculate volume of hemisphere :-

 \\ \twoheadrightarrow\quad  \sf{Volume  \: of \:  hemisphere =  \dfrac{2}{3} \pi r^3}

where,

  • Take π = 22/7
  • r denotes the radius of the hemisphere

Here, take r³ = 105/11 for simple calculation.

Substituting the given values,

 \\ \twoheadrightarrow\quad  \sf{Volume  \: of \:  hemisphere =  \dfrac{2}{3}  \times  \dfrac{22}{7}   \times  \dfrac{105}{11} }

 \\ \twoheadrightarrow\quad  \sf{Volume  \: of \:  hemisphere =  \dfrac{2}{3}  \times  \dfrac{ \not22}{7}   \times  \dfrac{105}{ \not11} }

 \\ \twoheadrightarrow\quad  \sf{Volume  \: of \:  hemisphere =  \dfrac{2}{3}  \times  \dfrac{2}{7}   \times  105 }

 \\ \twoheadrightarrow\quad  \sf{Volume  \: of \:  hemisphere =  \dfrac{2}{ \not3}  \times  \dfrac{2}{7}   \times   \not105 }

 \\ \twoheadrightarrow\quad  \sf{Volume  \: of \:  hemisphere =  2 \times  \dfrac{2}{7}   \times  35}

 \\ \twoheadrightarrow\quad  \sf{Volume  \: of \:  hemisphere =  2 \times  \dfrac{2}{ \not7}   \times   \not35}

 \\ \twoheadrightarrow\quad  \sf{Volume  \: of \:  hemisphere =  2 \times 2  \times  5}

 \\ \twoheadrightarrow\quad  \sf{Volume  \: of \:  hemisphere =  20}

 \\ \underline{ \therefore\quad  \textsf{ \textbf{Volume  \: of \:  hemisphere =  $20 \:  {  \bold{cm}}^{3}$ }}}

Similar questions