Math, asked by honeypunam96, 1 year ago

If x3+1/x3=18 then what will be the value of x4+1/x4?

Answers

Answered by Needthat
3

 {(x +   \frac{1}{x}) }^{3}  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(x +  \frac{1}{x} ) \\  \\ let \: x +  \frac{1}{x}  = y \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }   =  {y}^{3}  - 3y \\  \\  {y}^{3}  - 3y = 18 \\  \\ y( {y}^{2}  - 3) = 3 \times 6 \\  \\ y = 3 \\  \\  {y}^{2}  - 3 = 6 \\  \\ now \\  \\  {y}^{4}  =  {x}^{4}   +  \frac{1}{ {x}^{4} }  + 4( {x}^{2}  +  \frac{1}{ {x}^{2} } ) + 6 \\  \\  {y}^{4}  =  {x}^{4}   +  \frac{1}{ {x}^{4} }  + 4( {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 - 2) + 6 \\  \\  {y}^{4}  =  {x}^{4}   +  \frac{1}{ {x}^{4} }  + 4( {y}^{2} - 2  ) + 6 \\  \\  {y}^{4}  =  {x}^{4}  +  \frac{1}{ {x}^{4} }   +  4 {y}^{2}  - 2 \\  \\ {x}^{4}  +  \frac{1}{ {x}^{4} } =  {y}^{4}  - 4 {y}^{2}  + 2 \\  \\  =  {3}^{4}  - 4 \times  {3}^{2}  + 2 \\  \\  = 47 \\  \\ {x}^{4}  +  \frac{1}{ {x}^{4} } = 47

hope it helps

Similar questions