If x³ - 3x² + 3x - 7 = (x + 1)(ax² + bx + c), then find (a + b + c)
Answers
Answered by
167
If x³ - 3x² + 3x - 7 = (x + 1)(ax² + bx + c), then find (a + b + c)
first multiply
(x + 1)(ax² + bx + c)
= ax³ + bx² + cx + ax² + bx + c
= ax³ + bx² + ax² + cx + bx + c
= ax³ + (b+a)x² + (c + b)x + c
comparing it with
x³ - 3x² + 3x - 7
a = 1
b + a = -3 => b + 1 = -3 => b = -4
c + b = 3 = > c - 4 = 3 => c = 7
c = -7 should be 7
as if we put x = -1 in
x³ - 3x² + 3x - 7
-1 - 3 - 3 - 7 = 14 so x + 1 can not be factor so x +1 will be factor if
x³ - 3x² + 3x - 7 is actually
x³ - 3x² + 3x + 7
then -1 - 3 - 3 + 7 = 0
hence we can say that
a = 1
b = -4
c = 7
so a + b + c = 4
first multiply
(x + 1)(ax² + bx + c)
= ax³ + bx² + cx + ax² + bx + c
= ax³ + bx² + ax² + cx + bx + c
= ax³ + (b+a)x² + (c + b)x + c
comparing it with
x³ - 3x² + 3x - 7
a = 1
b + a = -3 => b + 1 = -3 => b = -4
c + b = 3 = > c - 4 = 3 => c = 7
c = -7 should be 7
as if we put x = -1 in
x³ - 3x² + 3x - 7
-1 - 3 - 3 - 7 = 14 so x + 1 can not be factor so x +1 will be factor if
x³ - 3x² + 3x - 7 is actually
x³ - 3x² + 3x + 7
then -1 - 3 - 3 + 7 = 0
hence we can say that
a = 1
b = -4
c = 7
so a + b + c = 4
Answered by
13
Step-by-step explanation:
ANSWER
Consider the given equation.
x3−3x2+3x−7=(x+1)(ax2+bx+c) .............(1)
Since, (x+1) is the factor, then we get
x2−4x+−7=ax2+bx+c
On comparing both sides, we get
a=1,b=−4,c=−7
Therefore,
a+b+c=1−4−7=−10
Hence, this is the answer.
Similar questions