If xcos θ -ysin θ = a, xsin θ + ycos θ = b, prove that x²+y²=a²+b².
Answers
Given :-
xcos Ø - ysinØ = a ----(1)
xsin Ø + ycos Ø = b -----(2)
To Prove :- x² + y² = a² + b²
Squaring and adding both the equations :-
(xcos Ø - ysin Ø)² + (xsin Ø + ycos Ø)² = a² + b²
x²cos²Ø + y²sin²Ø -2xysinØ.cosØ + x²sin²Ø + y²cos²Ø + 2xysinØ.cosØ = a² + b²
x²cos²Ø + x²sin²Ø + y²cos²Ø + y²sin²Ø = a² + b²
x²(cos²Ø+sin²Ø) + y²(cos²Ø+sin²Ø) = a² + b²
As we know that :- sin²Ø + cos²Ø = 1
x²(1) + y²(1) = a² + b²
Therefore,
x² + y² = a² + b²
Proved........
Answer:
given: x cos x - y sin x = a, x sin x + y cos x = b
to prove x² + y² = a² + b²
Step-by-step explanation:
let's take RHS and prove it equal to LHS
RHS => a² + b² =>
a² => (x cos x - y sin x)²
=> x² cos²x + y² sin²x - 2xy cos x sin x.............1
b² => (x sin x + y cos x)²
=> x² sin²x + y² cos²x + 2xy cos x sin x.....,......2
equation 1 + 2
=> x²cos²x+y²sin²x-2xy cos x sin x + x²sin²x+y²cos²x + 2xy cos x sin x
=> x²cos²x + y²sin²x + x²sin²x + y²cos²x
[ 2xy sin x cos x cancels out ]
=> x² [ sin²x + cos²x ] + y² [ sin²x + cos²x ]
=> x² [1] + y² [1 ] [ sin²x + cos²x = 1 ]
=> x² + y² = LHS Hence proved