If xsin³ø+ycos³ø=sinø and xsinø=ycosø, prove that x²+y²=1
Answers
Answered by
8
Heyaa user !
We need to use the given condition
but we are given that -
xsin³∅+ ycos³∅ = sin ∅cos∅
we can write it as
⇒ ( xsin∅ ) sin²∅ + ( ycos∅ ) cos ²∅ = sin∅ cos ∅
⇒ xsin∅ ( sin∅ ) ²+ ( xsin∅ ) ²cos∅ = sin∅cos∅
{ ∵ xsin∅ = ycos∅ }
⇒ xsin∅ [ sin∅² + cos∅ ²] = sin∅ cos∅
⇒ xsin∅ = sin∅cos∅
or x = cos∅
Now ,
xsin∅ = ycos∅
⇒ cos∅.sin∅ = ycos∅
⇒ y = sin∅
Hence x² + y² = cos² + sin² = 1
Hope this would help you !!
We need to use the given condition
but we are given that -
xsin³∅+ ycos³∅ = sin ∅cos∅
we can write it as
⇒ ( xsin∅ ) sin²∅ + ( ycos∅ ) cos ²∅ = sin∅ cos ∅
⇒ xsin∅ ( sin∅ ) ²+ ( xsin∅ ) ²cos∅ = sin∅cos∅
{ ∵ xsin∅ = ycos∅ }
⇒ xsin∅ [ sin∅² + cos∅ ²] = sin∅ cos∅
⇒ xsin∅ = sin∅cos∅
or x = cos∅
Now ,
xsin∅ = ycos∅
⇒ cos∅.sin∅ = ycos∅
⇒ y = sin∅
Hence x² + y² = cos² + sin² = 1
Hope this would help you !!
TheAishtonsageAlvie:
:-)
Similar questions