Math, asked by aafreenn887, 3 months ago

if xsquare +1/x sq =23,then find the value of x + 1/and xcube+ 1/xcube​

Answers

Answered by vipinkumar212003
1

Step-by-step explanation:

 \large{\green{Given:}}{x}^{2}  +  \frac{1}{ {x}^{2} }  = 23 \\ \large{\green{To \: find:}}x +  \frac{1}{x} \:and\: {x}^{3}  +  \frac{1}{ {x}^{3 } }   \\ \large{\green{Finding:}} {x}^{2}  +  \frac{1}{ {x}^{2} }  = 23(given)\\\large{(x +  \frac{1}{x} )}^{2}  =  {x}^{2}  + 2 \times x \times  \frac{1}{x}  +  \frac{1}{ {x}^{2} } \\\large {(x +  \frac{1}{x} )}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\\large {(x +  \frac{1}{x} )}^{2} = 23 + 2 = 25 \\ \large \: x +  \frac{1}{x}  =  \sqrt{25}  = 5 \\  \large{(x +  \frac{1}{x}) }^{3}  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times  {x}^{2}  \times  \frac{1}{x}  + 3 \times x \times  \frac{1}{ {x}^{2} }  \\ \large{(x +  \frac{1}{x}) }^{3}   = {x}^{3}  +  \frac{1}{ {x}^{3} } + 3(x +  \frac{1}{x} ) \\\large  {(5)}^{3}  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times 5 \\ \large125 =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 15 \\\large {x}^{3}  +  \frac{1}{ {x}^{3} } = 125 - 15 \\ \large{x}^{3}  +  \frac{1}{ {x}^{3} } = 110

HOPE THIS HELPS YOU

MARK ME BRAINLIEST

Similar questions