Math, asked by Himeshjha, 1 year ago

If xy (x + y) = 2 , then find dy/dx​

Answers

Answered by rishu6845
0

Answer:

dy / dx = - ( 2xy + y² ) / ( x² + 2xy )

Step-by-step explanation:

Given---> xy ( x + y ) = 2

To find ---> Derivative of given expression

Solution---> We have some formulee of differentiation , as follows,

1) d/dx ( u v ) = u dv/dx + v du/dx

2) d/dx ( x ) = 1

3) d/dx ( y ) = dy / dx

4) d/dx ( x² ) = 2x

5) d/dx ( Constant ) = 0

Now , ATQ,

xy ( x + y ) = 2

=> x²y + xy² = 2

Differentiating with respect to x , we get,

=> d/dx ( x²y ) + d/dx ( xy² ) = d/dx ( 2 )

=> x² dy/dx + y d/dx ( x² ) + x d/dx( y² ) + y² d/dx (x)

= 0

=> x² dy/dx + y (2x ) + x (2y) dy/dx + y² ( 1 ) = 0

=> x² dy/dx + 2xy + 2xy dy/dx + y² = 0

=> ( x² + 2xy ) dy/dx = - 2xy - y²

=> ( x² + 2xy ) dy/dx = - ( 2xy + y² )

=> dy / dx = - ( 2xy + y² ) / ( x² + 2xy )

=> dy / dx = - y ( 2x + y ) / x ( x + 2y )

Additional information--->

1) d/dx ( xⁿ ) = nxⁿ⁻¹

2) d/dx ( eˣ ) = eˣ

3) d/dx ( aˣ ) = aˣ loga

4) d/dx ( logx ) = 1/x

5) d/dx ( Sinx ) = Cosx

6) d/dx ( Cosx ) = -Sinx

7) d/dx ( tanx ) = Sec²x

8) d/dx ( Secx ) = Secx tanx

9) d/dx ( Cotx ) = - Cosec²x

10) d/dx ( Cosecx ) = - Cosecx Cotx

#Answerwithquality

#BAL

Answered by kannan4955
0

Answer:

To find ---> Derivative of given expression

Solution---> We have some formulee of differentiation , as follows,

1) d/dx ( u v ) = u dv/dx + v du/dx

2) d/dx ( x ) = 1

3) d/dx ( y ) = dy / dx

4) d/dx ( x² ) = 2x

5) d/dx ( Constant ) = 0

Now , ATQ,

xy ( x + y ) = 2

=> x²y + xy² = 2

Differentiating with respect to x , we get,

=> d/dx ( x²y ) + d/dx ( xy² ) = d/dx ( 2 )

=> x² dy/dx + y d/dx ( x² ) + x d/dx( y² ) + y² d/dx (x)

= 0

=> x² dy/dx + y (2x ) + x (2y) dy/dx + y² ( 1 ) = 0

=> x² dy/dx + 2xy + 2xy dy/dx + y² = 0

=> ( x² + 2xy ) dy/dx = - 2xy - y²

=> ( x² + 2xy ) dy/dx = - ( 2xy + y² )

=> dy / dx = - ( 2xy + y² ) / ( x² + 2xy )

=> dy / dx = - y ( 2x + y ) / x ( x + 2y )

Additional information--->

1) d/dx ( xⁿ ) = nxⁿ⁻¹

2) d/dx ( eˣ ) = eˣ

3) d/dx ( aˣ ) = aˣ loga

4) d/dx ( logx ) = 1/x

5) d/dx ( Sinx ) = Cosx

6) d/dx ( Cosx ) = -Sinx

7) d/dx ( tanx ) = Sec²x

8) d/dx ( Secx ) = Secx tanx

9) d/dx ( Cotx ) = - Cosec²x

10) d/dx ( Cosecx ) = - Cosecx Cotx

Step-by-step explanation:

Similar questions