Math, asked by mbakshi37, 5 months ago

If xy + yx = ab, find dy/dx.

Answers

Answered by kapilchavhan223
4

Step-by-step explanation:

The given function is xy - yx = ab

Let xy = u and yx = v

Then , the function becomes u - v = ab

dudx-dvdx=0 .....(1)

u = xy

⇒ log u = log(xy)

⇒ log u = y log x

Differentiating both sides with respect to x, we obtain

1ududx=logxdydx+y.ddx(logx)

dudx=[logxdydx+y.1x]

dudx=xy(logx dydx+yx) ...(2)

Answered by Anonymous
1

Answer :-

› \: \frac{dy}{dx}  =  \frac{ - ( {x}^{y}. \frac{y}{x} +  \:  {y}^{x}. \: log \: y) }{( {x}^{y} .  \:  log \: x \:  +  {y}^{x}. \frac{x}{y})  }

Step-by-step explanation :-

› \:  {x}^{y} (y \: log \: x \:  +  \frac{y}{x} ) \:  +  \:  {y}^{x} (log \: y \:  +  \frac{x}{y} \: .y \: ) \:  = 0

› \: y \: ( {x}^{y} \: log \: x \:  +  \:  {y}^{x} \: . \frac{x}{y})= -  {x}^{y} ( \frac{y}{x}  -  {y}^{x}  \: log \: x \: )

› \:  \frac{dy}{dx}  =   \frac{- ( {x}^{y}.  \frac{y}{x}  +  {y}^{x}. log \: y)}{( {x}^{y}.log \: x \:  +  {y}^{x}. \frac{x}{y})}

Hope it helps!

Similar questions