Math, asked by sreejasaji1978, 1 year ago

If xyz=1 ,then show that (1+x+y-1)-1 + (1+y+z-1)-1+(1+z+x-1)-1=1

Answers

Answered by kartikeyshu10
358
hope this answer is helpful to you
Attachments:
Answered by phillipinestest
143

The value of  \bold{\left(1+x+y^{-1}\right)^{-1}+\left(1+y+z^{-1}\right)^{-1}+\left(1+z+x^{-1}\right)^{-1}=1} is proven.

Solution:

Given:

xyz = 1

To prove: \left(1+x+y^({-1}\right) )^{-1} +\left(1+y+z^({-1}\right) )^{-1} +\left(1+z+x^({-1}\right) )^{-1} =1

From xyz = 1, we can take y=\frac{1}{z x}, x=\frac{1}{y z}, z=\frac{1}{x y}  

Normally, the power -1 is considered as the denominator.

\begin{array}{l}{=\frac{1}{1+x+\frac{1}{y}}+\frac{1}{1+y+\frac{1}{z}}+\frac{1}{1+z+\frac{1}{x}}} \\\\ {=\frac{y}{y+x y+1}+\frac{1}{1+y+x y}+\frac{1}{1+\frac{1}{x y}+\frac{1}{x}}} \\\\ {=\frac{y}{y+x y+1}+\frac{1}{1+y+x y}+\frac{x y}{1+y+x y}} \\ \\{=\frac{1+y+x y}{1+y+x y}=1}\end{array}

Hence proved that the value of \left(1+x+y^{-1}\right)^{-1}+\left(1+y+z^{-1}\right)^{-1}+\left(1+z+x^{-1}\right)^{-1}  is 1 by considering xyz =1.

Similar questions