Math, asked by ramadevisubhadra, 1 year ago

If xyz are real numbers prove that √(x^(-1) )y . √(y^(-1) )z . √(z^(-1) )x = 1

Answers

Answered by S1127
154
This is the solution to your question
Attachments:
Answered by parmesanchilliwack
75

Answer:

We have to prove that,

\sqrt{(x^{-1})y}.\sqrt{(y^{-1})z} .\sqrt{(z^{-1})x} = 1

L.H.S.

\sqrt{(x^{-1})y}.\sqrt{(y^{-1})z} .\sqrt{(z^{-1})x}

=\sqrt{x^{-1}y}.\sqrt{y^{-1}z} .\sqrt{z^{-1}x}

=\sqrt{x^{-1}y.y^{-1}z.z^{-1}x}     (\sqrt{a}\times \sqrt{b}=\sqrt{ab})

=\sqrt{x^{-1+1}.y^{-1+1}z^{-1+1}}      (a^m\times a^n=a^{m+n})

=\sqrt{x^0 y^0 z^0}      

=\sqrt{1\times 1\times 1}

=\sqrt{1}

=1

= R.H.S.

Hence, proved...

Similar questions