Math, asked by saniairum028, 5 hours ago

If y_1=Cos 3x and y_2=Sin 3x are two solutions then W = ….. *
1​

Answers

Answered by pulakmath007
2

SOLUTION

GIVEN

The solution is given by

 \sf{y_1 =  \cos 3x  \:  \:  \: and \:  \:  \:  y_2 =  \sin 3x}

TO DETERMINE

The value of W

EVALUATION

Here it is given that the solution is given by

 \sf{y_1 =  \cos 3x  \:  \:  \: and \:  \:  \:  y_2 =  \sin 3x}

Hence the required Wronskian

= W

 = \displaystyle \sf{\begin{vmatrix}  \:  \: y_1 & y_2  \\ \\ y_1' & y_2' \:  \:  \end{vmatrix} }

 = \displaystyle \sf{\begin{vmatrix}  \:  \sf{\cos 3x} & \sf{\sin 3x}  \\ \\  - 3\sf{\sin 3x} & 3\sf{\cos 3x} \:  \:  \end{vmatrix} }

 = \sf{3{\cos}^{2}  3x +3{\sin}^{2}  3x  }

 = \sf{3({\cos}^{2}  3x +{\sin}^{2}  3x)  }

 = \sf{3 \times 1 }

 = 3

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=u^2-v^2,y=2uv find the jacobian of x, y with respect to u and v

https://brainly.in/question/34361788

2. given u=yzx , v= zxy, w =xyz then the value of d(u,v,w)/d(x,y,z) is (a) 0 (b) 1 (c) 2 (d) 4

https://brainly.in/question/34435016

Similar questions