Math, asked by aaboiii, 7 months ago

if y=1+x+x^2/2!+x^3/3......infinity, than show that dy/dx=y

Answers

Answered by shadowsabers03
3

Given,

\longrightarrow y=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\,\dots

Differentiating with respect to x,

\longrightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left(1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\dfrac{x^4}{4!}+\,\dots\right)

\longrightarrow \dfrac{dy}{dx}=0+1+\dfrac{2x}{2!}+\dfrac{3x^2}{3!}+\dfrac{4x^3}{4!}+\,\dots

\longrightarrow \dfrac{dy}{dx}=1+\dfrac{2x}{2}+\dfrac{3x^2}{3\times2!}+\dfrac{4x^3}{4\times3!}+\,\dots

\longrightarrow \dfrac{dy}{dx}=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\,\dots

\longrightarrow\underline{\underline{\dfrac{dy}{dx}=y}}

Another Method:-

It is true that,

\longrightarrow e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\,\dots

Then,

\longrightarrow y=e^x

We know derivative of e^x with respect to x is e^x itself.

Therefore,

\longrightarrow\dfrac{dy}{dx}=e^x

\longrightarrow\underline{\underline{\dfrac{dy}{dx}=y}}

Similar questions