Math, asked by sgladstorm4426, 8 months ago

If (y + 1/y) = 8 then, (y² +1/y²) is

Answers

Answered by ItzShinyQueen13
1

\huge\red {\bf {\underline {Solution:-}}}

{\tt {y +  \frac{1}{y}  = 8}}

⇒{\tt { {(y +  \frac{1}{y}) }^{2}  =  {8}^{2}}}

⇒{\tt { {y}^{2}  + 2 \times y  \times  \frac{1}{y}  +  \frac{1}{ {y}^{2} }  = 64}}

⇒ {\tt {{y}^{2}  + 2 +  \frac{1}{ {y}^{2} }  = 64}}

⇒{\tt { {y}^{2}  +  \frac{1}{  {y}^{2}  }  = 64 - 2}}

⇒{\tt { {y}^{2}  +   \frac{1}{ {y}^{2} }  = 62}}

_______________________

Hope It Helps Uh!

Answered by ItzShinyQueenn
3

\pink{\bf{\underline {Solution:-}}}

{\tt{y+\frac{1}{y} = 8}}

 \tt{⟹ {(y +  \frac{1}{y}) }^{2} } =  {8}^{2}

 \tt{⟹ {y}^{2}  + 2 \times y \times  \frac{1}{y}   +  \frac{1}{ {y}^{2} }  = 64}

 \tt{⟹ {y}^{2} + 2 +  \frac{1}{ {y}^{2} }  = 64 }

 \tt{⟹ {y}^{2} +  \frac{1}{ {y}^{2} } = 64 - 2  }

 \tt{⟹ {y}^{2} +  \frac{1}{ {y}^{2} } = 62  }

____________________________

\red {\bf {\underline{Important\:Formulas:-}}}

{(a+b)}^{2} = {a}^{2} + 2ab + {b}^{2}

{(a-b)}^{2} = {a}^{2} - 2ab + {b}^{2}

{(a+b)}^{2} = {(a-b)}^{2} + 4ab

{(a-b)}^{2} = {(a+b)}^{2} - 4ab

 {a}^{2} - {b}^{2} = (a+b)(a-b)

 {a}^{2} + {b}^{2} = {(a+b)}^{2} - 2ab

 {a}^{2} + {b}^{2} = {(a-b)}^{2} + 2ab

 4ab = {(a+b)}^{2} - {(a-b)}^{2}

 2 ({a}^{2}+{b}^{2}) = {(a+b)}^{2} + {(a-b)}^{2}

Similar questions