Math, asked by kritikaa44, 6 months ago

If (y + 1/y) = 8
then, (y² +1/y²) is?

Give full explanation!​

Answers

Answered by SweetCharm
1

\purple{\bf{\underline {Solution:-}}}

{\tt{y+\frac{1}{y} = 8}}

 \tt{⟹ {(y +  \frac{1}{y}) }^{2} } =  {8}^{2}

 \tt{⟹ {y}^{2}  + 2 \times y \times  \frac{1}{y}   +  \frac{1}{ {y}^{2} }  = 64}

 \tt{⟹ {y}^{2} + 2 +  \frac{1}{ {y}^{2} }  = 64 }

 \tt{⟹ {y}^{2} +  \frac{1}{ {y}^{2} } = 64 - 2  }

 \tt{⟹ {y}^{2} +  \frac{1}{ {y}^{2} } = 62  }

____________________________

\blue {\bf {\underline{Some~Important\:Formulas:}}}

  • {(a+b)}^{2} = {a}^{2} + 2ab + {b}^{2}

  • {(a-b)}^{2} = {a}^{2} - 2ab + {b}^{2}

  • {(a+b)}^{2} = {(a-b)}^{2} + 4ab

  • {(a-b)}^{2} = {(a+b)}^{2} - 4ab

  •  {a}^{2} - {b}^{2} = (a+b)(a-b)

  •  {a}^{2} + {b}^{2} = {(a+b)}^{2} - 2ab

  •  {a}^{2} + {b}^{2} = {(a-b)}^{2} + 2ab

  •  4ab = {(a+b)}^{2} - {(a-b)}^{2}

  •  2 ({a}^{2}+{b}^{2}) = {(a+b)}^{2} + {(a-b)}^{2}

{\huge{\underline{\small{\mathbb{\pink{HOPE\:HELPS\:UH :)}}}}}}

\red{\tt{sωєєтcнαям♡~}}

Answered by Aman2324
0

please mark the answer as brainliest and thank the answer.

Attachments:
Similar questions