Physics, asked by Somaal8580, 1 year ago

If y=2/sin thita + root 3 cos thita then minimum value of y is

Answers

Answered by salmamohabbat
938
i have answered it and it is in the clicked picture which i have posted
Attachments:

foziii: thank u so much
navyavats: fantastic ans ...dear. ......you should must get 10K thanks
Answered by phillipinestest
266

The value of y which is a division term will be minimum only when the denominator is maximum to the numerator, therefore sin \theta +\sqrt { 3 cos\theta } needs to be maximum which will in case

\frac { d }{ d\theta } (sin\theta +\sqrt { 3cos\theta } )=0\Rightarrow\frac { d }{ d\theta } (sin\theta )+\frac { d }{ d\theta } (\sqrt { 3cos\theta } )=0

\Rightarrow\frac { d }{ d\theta } (sin \theta )+\sqrt { 3\frac { d }{ d\theta } (cos\theta ) }

\Rightarrow\quad cos \theta -\sqrt { 3sin\theta } =0

Divide the equation by cos\theta , we\quad get\quad 1-\sqrt { 3tan\theta } =0

\Rightarrow\quad -\sqrt { 3 tan \theta } =-1

\Rightarrow\quad tan \theta \quad =\quad \frac { 1 }{ \sqrt { 3 } } \quad

\Rightarrow\theta=30^0.

Putting this value to the value of y, we get

-y=\frac { 2 }{ sin30^0+\sqrt { 3 } cos30^0 }

\Rightarrow\quad y=\frac { 2 }{ [\frac { 1 }{ 2 } +\sqrt { 3x } (\sqrt { \frac { 3 }{ 2 } } )] }

\Rightarrow\quad y =1.

Similar questions