Math, asked by ajthebeast71011, 1 year ago

if y=3-2 root 2 , find y^2+1/y^2

Answers

Answered by iTzMiSsTwinKle
5

Answer:

  \frac{ {y}^{2}  + 1}{ {y}^{2} }  =  \frac{2}{1}  = 2✔✔

Step-by-step explanation:

y = 3 -  2\sqrt{2}  \:  \:  \: ( given) \\   \frac{ {y}^{2}  + 1}{ {y}^{2} }  \\  =  \frac{ ({3 -  2\sqrt{2} })^{2} + 1 }{ ({3 -  2\sqrt{2} })^{2} }  \\  =  \frac{9 - 8 + 1}{9 - 8}   \\  =  \frac{1 + 1}{1}  \\  =  \frac{2}{1}  \\  = 2

Answered by Anonymous
18

Solution :-

As given :-

y = 3 - 2√2

We have to find out the value of y² + 1/y²

Now via Rationalising the denominator of the 1/y

 \dfrac{1}{y} = \dfrac{1}{3 - 2\sqrt{2}} \times \dfrac{3 + 2\sqrt{2}}{3 + 2\sqrt{2}}

 \dfrac{1}{y} = \dfrac{3 + 2\sqrt{2}}{3^2 - (2\sqrt{2})^2}

 \dfrac{1}{y} = \dfrac{3 + 2\sqrt{2}}{9 - 8}

 \dfrac{1}{y} = 3 + 2\sqrt{2}

Now as we know that

a² + b² = (a + b)² - 2ab

 y^2 + \dfrac{1}{y^2} = \left( y + \dfrac{1}{y} \right)^2 - 2 \: . \: y \: . \dfrac{1}{y}

  y^2 + \dfrac{1}{y^2} = ( 3 - 2\sqrt{2} + 3 + 2\sqrt{2} )^2 - 2

  y^2 + \dfrac{1}{y^2} = ( 6 )^2 - 2

  y^2 + \dfrac{1}{y^2} = 36 - 2

So

 \huge{\boxed{\sf{ y^2 + \dfrac{1}{y^2} = 34}}}

Similar questions