if y=√3 sin t+cost, then maximum value of y occurs when value of t is
Answers
Answered by
7
Answer:
π / 3
Explanation:
Given :
y = √ 3 sin t + cos t
Since t depend on y :
To find max. value of y :
= > d y / d x = 0
= > d y / d x = (√ 3 sin t + cos t )' = 0
= > √ 3 cos t - sin t = 0
r = √ ( ( √ 3 )² + 1² ) = 2
Dividing by 2 we get :
= > √ 3 / 2 cos t - 1 / 2 sin t = 0
= > cos t . cos π / 6 - sin t . sin π / 6 = 0
Using formula :
= > cos A . cos B - sin A . sin B = cos ( A + B )
= > cos ( t + π / 6 ) = 0
Writing ' 0 ' as cos π / 2
= > cos ( t + π / 6 ) = cos π / 2
Comparing both side we get :
= > t + π / 6 = π / 2
= > t = π / 3
Therefore , value of t is π / 3.
Similar questions