Math, asked by gaurikadam22, 1 day ago

if y = (4sinx-3cosx) the the maximum value of y is​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = 4sinx - 3cosx

We know,

\boxed{ \tt{ \:  \sqrt{ {4}^{2}  +  {( - 3)}^{2} } =  \sqrt{16 + 9} =  \sqrt{25} = 5 \: }}

On multiply and divide by 5, we get

\rm :\longmapsto\:y = \dfrac{4}{5}sinx   \: -  \: \dfrac{3}{5}cosx

Let assume that,

\rm :\longmapsto\:\boxed{ \tt{ \: cosa =  \frac{4}{5}}}

So,

\rm :\longmapsto\:\boxed{ \tt{ \: sina =  \frac{3}{5}}}

So, the above equation can be rewritten as

\rm :\longmapsto\:y = 5[sinxcosa \:  -  \: sinacosx]

We know,

\boxed{ \tt{ \: sinxcosy - sinycosx = sin(x - y) \: }}

So, using this identity, we get

\rm :\longmapsto\:y = 5 \: sin(x - a)

We know,

For every x belongs to real number,

\rm :\longmapsto\: - 1 \leqslant sin(x - a) \leqslant 1

On multiply by 5, we get

\rm :\longmapsto\: - 5 \leqslant 5sin(x - a) \leqslant 5

\bf\implies \: - 5 \leqslant y \leqslant 5

\bf\implies \:y \: has \: maximum \: value = 5

Note :-

Short cut

1. If y = a sinx + b cosx, then

\rm :\longmapsto\:\boxed{ \tt{ \: -\sqrt{ {a}^{2}+{b}^{2}} \leqslant y \leqslant  \sqrt{ {a}^{2}+{b}^{2}} \: }}

2. If y = a sinx + b cosx + c, then

\rm :\longmapsto\:\boxed{ \tt{ \: c-\sqrt{ {a}^{2}+{b}^{2}} \leqslant y \leqslant c +  \sqrt{ {a}^{2}+{b}^{2}} \: }}

Answered by khushi15686
3

Answer:

Maximum value of function 5

Similar questions