Math, asked by BrainlyHelper, 1 year ago

If,y=5cosx-3sinx prove that d^2 y/dx^2 +y=0

Answers

Answered by abhi178
8
Given, \bf{y=5cosx-3sinx}-----(1)
now, differentiate y with respect to x
dy/dx = d(5cosx - 3sinx)/dx
= d(5cosx)/dx - d(3sinx)/dx
= 5(-sinx) - 3cosx
= -5sinx - 3cosx

so, \bf{\frac{dy}{dx}=-5sinx-3cosx}
differentiate dy/dx once again,
\bf{\frac{d^2y}{dx^2}=\frac{d\{-5sinx-3cos\}}{dx}}\\\\=\bf{-5cosx -3(-sinx)}\\\\=\bf{-(5cosx-3sinx)=-y}
[ put equation (1), ]

hence, d²y/dx² + y = 0 [ proved /]
Answered by shashankavsthi
2
y=5cosx-3sinx

differentiating wrt x we get...

 \frac{dy}{dx}  =  - 5 \sin(x)  - 3 \cos(x)  \\  \frac{ {d}^{2}y }{d {x}^{2} }  =  - 5cos(x) + 3 \sin(x)  \\ now \: taking \: lhs \\  - 5 \cos(x)  + 3sin(x) + y \\  - 5 \cos(x)  + 3 \sin(x)  + (5 \cos(x)  - 3 \sin(x) ) \\ 0 = rhs
Similar questions