If y = 6(x+1)+(a + bx)e^3x then show that y" -6y' +9y = 54x +18.....
Answers
Answered by
6
Given : y = 6(x+1)+(a + bx)e^3x
To Find : show that y" -6y' +9y = 54x +18
Solution:
y = 6(x + 1) + (a + bx)e³ˣ
=> y' = 6 + (a + bx)3e³ˣ + be³ˣ
y'' = (a + bx)9e³ˣ + 3be³ˣ + 3be³ˣ
y" -6y' +9y
= (a + bx)9e³ˣ + 3be³ˣ + 3be³ˣ - 6(6 + (a + bx)3e³ˣ + be³ˣ) + 9(6(x + 1) + (a + bx)e³ˣ)
= (a + bx)9e³ˣ + 6be³ˣ - 36 - 18(a + bx)e³ˣ - 6be³ˣ + 54(x + 1) + 9(a + bx)e³ˣ
= (a + bx)e³ˣ(9 - 18 + 9) + be³ˣ(6 - 6) -36 + 54x + 54
= 0 + 0 - 36 + 54x + 54
= 54x + 18
Hence y" -6y' +9y = 54x + 18
QED
Learn More:
Find the derivative of f(x)=sin4x from 1st principle - Brainly.in
brainly.in/question/9194746
Find the derivative by first principle: - Brainly.in
brainly.in/question/7855223
Similar questions