Math, asked by veerjain0825, 8 months ago

If y = √a+2b +√a−2b/√a+2b− √a−2b , prove that by 2 – ay + b = 0 complete ex

Answers

Answered by krrew
2

Answer:

Given that ;

x = \frac{\sqrt{a + 2b} + \sqrt{a - 2b}}{\sqrt{a + 2b} -\sqrt{a - 2b}}

On rationalising it's denominator, we get ;

\frac{\sqrt{a + 2b} + \sqrt{a - 2b}}{ \sqrt{a + 2b} -\sqrt{a - 2b}}\\ \\ \frac{\sqrt{a + 2b} + \sqrt{a - 2b}}{ \sqrt{a + 2b} -\sqrt{a - 2b}} * \frac{\sqrt{a + 2b} +\sqrt{a - 2b}} {\sqrt{a + 2b} + \sqrt{a - 2b} } \\\\\frac{(\sqrt{a + 2b} + \sqrt{a - 2b})^2 }{(\sqrt{a + 2b}) ^2-(\sqrt{a + 2b}) ^2}\\\\ \frac{(\sqrt{a + 2b}) ^2+ ( \sqrt{a -2b}) ^2+2( \sqrt{a + 2b} )( \sqrt{a -2b} )}{a +2b - a + 2b} \\\\ \frac{a + 2b + a - 2b + 2( \sqrt{a + 2b})( \sqrt{a -2b} )}{4b}

\frac{2a + 2 ( \sqrt{a + 2b})( \sqrt{a - 2b})}{4b}

Now, taking 2 as common ;

x = \frac{\cancel{2}( a + ( \sqrt{a + 2b}) ( \sqrt{a - 2b}) }{\cancel{4}b}\\\\ x = \frac{a+ ( \sqrt{a + 2b}) ( \sqrt{a - 2b})}{2b}

On cross multiplying ;

2bx = a+ ( \sqrt{a + 2b}) ( \sqrt{a - 2b})\\\\ 2bx - a = ( \sqrt{a + 2b}) ( \sqrt{a - 2b})

On squaring both sides ;

(2bx - a)^{2} =( \sqrt{a + 2b}) ( \sqrt{a -2b})^{2}

⇒ 4b²x² + a² - 4bxa = ( a + 2b )( a - 2b )

⇒ 4b²x² + a² - 4bxa = a² - 4b²

⇒ 4b²x² + a² - 4bxa - a² + 4b² = 0

⇒ 4b²x² -  4xa + 4b² = 0

⇒ 4b ( bx² - xa + b ) = 0

⇒ bx² - ax + b = 0

                    Hence Proved.

Answered by Salmonpanna2022
1

 \bf \underline{Given-} \\

 \sf{x =  \frac{ \sqrt{a  +  2b} +  \sqrt{a - 2b}  }{ \sqrt{a + 2b}  -  \sqrt{a - 2b} }  } \\

 \bf \underline{To\: find-} \\

 \sf{prove \: that :  \:  {bx}^{2} - ax + b = 0 } \\

 \bf \underline{Solution-} \\

\textsf{We have,}\\

 \sf{x =  \frac{ \sqrt{a  +  2b} +  \sqrt{a - 2b}  }{ \sqrt{a + 2b}  -  \sqrt{a - 2b} }  } \\

\textsf{The denominator is : √(a+2b) - √(a-2b)}\\

\textsf{We know that}\\

\textsf{The rationalising factor of : √(p + q) - √(p-q) = √(p+q) + √(p-q).}\\

\textsf{Therefore, the rationalising factor of: √(a+2b) - √(a-2b) = √(a+2b) + √(a-2b).}\\

\textsf{On, rationalising the denominator,we get}\\

 \sf{x =  \frac{ \sqrt{a  +  2b} +  \sqrt{a - 2b}  }{ \sqrt{a + 2b}  -  \sqrt{a - 2b} }  \times\frac{ \sqrt{a  +  2b} +  \sqrt{a - 2b}  }{ \sqrt{a + 2b}   +  \sqrt{a - 2b} }   } \\

 \sf{x =  \frac{  (\sqrt{a  +  2b} +  \sqrt{a - 2b})( \sqrt{a + 2b}    +  \sqrt{a - 2b}) }{( \sqrt{a + 2b}  -  \sqrt{a - 2b})( \sqrt{a + 2b}   +  \sqrt{a - 2b} )}  }  \\

 \sf{x =  \frac{  (\sqrt{a  +  2b} +  \sqrt{a - 2b} {)}^{2}  }{( \sqrt{a + 2b}  -  \sqrt{a - 2b})( \sqrt{a + 2b}   +  \sqrt{a - 2b} )}  }  \\

\textsf{★ Now, comparing the denominator with (a-b)(a+b), we get}\\

 \sf{ \:  \:  \:  \:  \: a =  \sqrt{a + 2b} \: and \: b =  \sqrt{a - 2b}  } \\

\textsf{Using identity (a+b)(a-b) = a²-b², we get}\\

 \sf{x =  \frac{  (\sqrt{a  +  2b} +  \sqrt{a - 2b} {)}^{2}  }{( \sqrt{a + 2b}  {)}^{2}  -  (\sqrt{a - 2b} {)}^{2} }  }  \\

 \sf{x =  \frac{  (\sqrt{a  +  2b} +  \sqrt{a - 2b} {)}^{2}  }{a + 2b - (a + 2b) }  }  \\

 \sf{x =  \frac{ a + 2b + a - 2b + 2 \sqrt{ {a}^{2} -  {4b}^{2}  }   }{a + 2b - (a + 2b) }  }  \\

  \Rightarrow\sf{x =  \frac{a +  \sqrt{ {a}^{2}  -  {4b}^{2} } }{2b} } \\

\Rightarrow\sf{2bx =a +  \sqrt{ {a}^{2} -  {4b}^{2}  } } \\

\Rightarrow\sf{2bx - a = \sqrt{ {a}^{2}  -  {4b}^{2} } } \\

\textsf{Squaring on both sides,we get}\\

 \sf{(2bx - a {)}^{2} =  {a}^{2} - 4 {b}^{2}   } \\

\Rightarrow\sf{ {4b}^{2} {x}^{2}  +   \cancel{{a}^{2}} - 4abx -  \cancel{ {a}^{2}} +  {4b}^{2}    =0} \\

\Rightarrow\sf{ {4b}^{2} {x}^{2}  - 4abx  +  {4b}^{2}    =0 \:  \: \Rightarrow\sf{4( {b}^{2} {x}^{2}  - abx  +  {4b}^{2}  )  =0} } \\

\Rightarrow\sf{{b}^{2} {x}^{2}  - abx  +  {4b}^{2}    =0 \:  \:  \:  \:  \: \Rightarrow\sf{b( {b}{x}^{2}  - ax  +  {b} )  =0} } \\

\Rightarrow\sf{{b}{x}^{2}  - ax  +  {b} =0} \\

 \bf \underline{Hence, proved.} \\

Similar questions