Math, asked by abdulhaseeb1, 1 year ago

if y=a-x÷a+x find dy/dx

Answers

Answered by sonu806
19
U=a-x
U'=a

V=a+x
V'=a

dy/dx=VU'-UV'/V^2
substituting we get

=2ax/(a+x)^2

Hope it helps you
Mark it as the brainlest please
Answered by ajajit9217
0

Answer:

\frac{d}{dx} (\frac{a-x}{a+x}) = \frac{-2a}{(a+x)^2}

Step-by-step explanation:

Given y = \frac{a-x}{a+x}

We have to find \frac{dy}{dx}

We know that \frac{d}{dx} (\frac{N}{D}) = \frac{D\frac{d}{dx}N - N\frac{d}{dx}D}{D^2}

where N = Numerator

           D = Denominator

Therefore,  \frac{dy}{dx} =  \frac{d}{dx} (\frac{a-x}{a+x})

Using the above rule,

                 \frac{dy}{dx}  = \frac{(a+x)(0 -1) - (a-x)(0+1)}{(a+x)^2}

                      = \frac{(a+x)( -1) - (a-x)(1)}{(a+x)^2}

                      = \frac{-a-x - a+x}{(a+x)^2}

                      = \frac{-2a}{(a+x)^2}

Therefore,  \frac{d}{dx} (\frac{a-x}{a+x}) = \frac{-2a}{(a+x)^2}

Similar questions