If y = asinx+bcosx,y²+(y₁)²=........(a²+b²≠0),Select Proper option from the given options.
(a) acosx-bsinx
(b) (asinx-bcosx)²
(c) a²+b²
(d) 0
Answers
Answered by
1
Given, y = asinx + bcosx
differentiate both sides with respect to x,
dy/dx = d(asinx + bcosx)/dx
= a.d(sinx)/dx + b.d(cosx)/dx
= a.cosx + b(-sinx)
= acosx - bsinx
hence, y₁ = (acosx - bsinx)
taking square both sides,
(y₁)² = (acosx - bsinx)²
now, y² + (y₁)² = (asinx + bcosx)² + (acosx - bsinx)²
= a²sin²x + b²cos²x + 2absinx.cosx + a²cos²x + b²sin²x - 2absinx.cosx
= (a² + b²)sin²x + (a² + b²)cos²x
= (a² + b²){sin²x + cos²x}
but sin²x + cos²x = 1 [ from identities]
= (a² + b²) × 1 = (a² + b²)
hence, option (c) is correct
differentiate both sides with respect to x,
dy/dx = d(asinx + bcosx)/dx
= a.d(sinx)/dx + b.d(cosx)/dx
= a.cosx + b(-sinx)
= acosx - bsinx
hence, y₁ = (acosx - bsinx)
taking square both sides,
(y₁)² = (acosx - bsinx)²
now, y² + (y₁)² = (asinx + bcosx)² + (acosx - bsinx)²
= a²sin²x + b²cos²x + 2absinx.cosx + a²cos²x + b²sin²x - 2absinx.cosx
= (a² + b²)sin²x + (a² + b²)cos²x
= (a² + b²){sin²x + cos²x}
but sin²x + cos²x = 1 [ from identities]
= (a² + b²) × 1 = (a² + b²)
hence, option (c) is correct
Answered by
0
In the attachment I have answered this problem.
The solution is simple and easy to understand.
Correct option is C
See the attachment for detailed solution.
Attachments:
Similar questions