Math, asked by mithunhaldkar2348, 9 months ago

If y = cos^-1 ( 1 - 4^x / 1 + 4^x ) . Find dy/dx.

Answers

Answered by shadowsabers03
5

Given,

\longrightarrow y=\cos^{-1}\left(\dfrac{1-4^x}{1+4^x}\right)

\longrightarrow y=\cos^{-1}\left(\dfrac{1-(2^2)^x}{1+(2^2)^x}\right)

\longrightarrow y=\cos^{-1}\left(\dfrac{1-(2^x)^2}{1+(2^x)^2}\right)\quad\quad\dots(1)

Substitute,

\longrightarrow 2^x=\tan\theta

\longrightarrow 2^x\log 2\ dx=\sec^2\theta\ d\theta

\longrightarrow \dfrac{d\theta}{dx}=\dfrac{2^x\log2}{\sec^2\theta}

\longrightarrow \dfrac{d\theta}{dx}=\dfrac{2^x\log2}{1+\tan^2\theta}

\longrightarrow \dfrac{d\theta}{dx}=\dfrac{2^x\log2}{1+(2^x)^2}

\longrightarrow \dfrac{d\theta}{dx}=\dfrac{2^x\log2}{1+4^x}\quad\quad\dots(2)

Then (1) becomes,

\longrightarrow y=\cos^{-1}\left(\dfrac{1-\tan^2\theta}{1+\tan^2\theta}\right)

\longrightarrow y=\cos^{-1}\left(\cos(2\theta)\right)

\longrightarrow y=2\theta

\longrightarrow dy=2\ d\theta

Dividing by dx,

\longrightarrow \dfrac{dy}{dx}=\dfrac{2\ d\theta}{dx}

From (2),

\longrightarrow \dfrac{dy}{dx}=2\times\dfrac{2^x\log2}{1+4^x}

\longrightarrow\underline{\underline{\dfrac{dy}{dx}=\dfrac{2^{x+1}\log2}{1+4^x}}}

Similar questions