Math, asked by venswarnamala9754, 1 year ago

If y=(cos⁻¹ x)², prove (1-x²)y² -xy₁=2

Answers

Answered by hukam0685
0

Step-by-step explanation:

If

y =  ({ {cos}^{ - 1}x })^{2}  \\  \\

differentiate y with respect to x

 \frac{dy}{dx}  =  {y}^{1}  =  - 2 {cos}^{ - 1} x. \frac{1}{ \sqrt{1 -  {x}^{2} }} .. eq1  \\  \\  \frac{ {d}^{2} y}{d {x}^{2} }  =  \frac{  - 2\sqrt{1 -  {x}^{2} } . \frac{ - 1}{ \sqrt{1 -  {x}^{2} } }   + 2 {cos}^{ - 1} x. \frac{1}{ 2\sqrt{1 -  {x}^{2} } }( - 2x) }{1 -  {x}^{2} }  \\  \\ \frac{ {d}^{2} y}{d {x}^{2} }   =  \frac{2 -  \frac{2x \:  {cos}^{ - 1} x}{ \sqrt{1 -  {x}^{2} } } }{1 -  {x}^{2} }  \\  \\ \frac{ {d}^{2} y}{d {x}^{2} }   =  {y}^{11}   = \frac{2 \sqrt{1 -  {x}^{2} }  -2x \:  {cos}^{ - 1} x \:  }{ {(1 -  {x}^{2} )}^{ \frac{3}{2} } }

Put the value of y' and y'' in the equation

 (1 -  {x}^{2} ) {y}^{''} -  x {y}^{'}  = 2 \\  \\ (1 -  {x}^{2} )\Bigg( \frac{2 \sqrt{1 -  {x}^{2} }  -2x \:  {cos}^{ - 1} x \:  }{ {(1 -  {x}^{2} )}^{ \frac{3}{2} } }\Bigg)  -  x \Bigg(- 2 {cos}^{ - 1} x. \frac{1}{ \sqrt{1 -  {x}^{2} }}\Bigg) \\  \\  \frac{2( \sqrt{1 -  {x}^{2} }  - x \:  {cos}^{ - 1}x) }{ \sqrt{1 -  {x}^{2} } }  +  \frac{2x. {cos}^{ - 1}x }{ \sqrt{1 -  {x}^{2} } }  \\  \\ split \: the \: LCM \: in \: first \: term \\  \\ 2 \frac{ \sqrt{1 -  {x}^{2} } }{ \sqrt{1 -  {x}^{2} } }  -  \frac{2x. {cos}^{ - 1}x }{ \sqrt{1 -  {x}^{2} } }  +  \frac{2x. {cos}^{ - 1}x }{ \sqrt{1 -  {x}^{2} } }  \\  \\  = 2\\\\  (1 -  {x}^{2} ) {y}^{''} -  x {y}^{'}=2\\\\ =RHS\\  \\

Hence proved.

Hope it helps you.

Similar questions