Math, asked by Romidash9809, 1 year ago

If y=sinpt,x=sint prove (1-x²)y²-xy₁+p²y=0

Answers

Answered by hukam0685
3

Step-by-step explanation:

It is given that

y = sin \: pt...eq1 \\  \\ x = sin \: t ...eq2\\  \\

differentiate eq 1 and eq2 with respect to t

 \frac{dy}{dt}  = p \: cos \: pt \\  \\  \frac{dx}{dt}  = cos \: t \\  \\

 \frac{dy}{dx}  ={y}^{'}= \frac{dy}{dt}  \times  \frac{dt}{dx}  =  \frac{p \: cos \: pt}{cos \: t} ...eq1 \\  \\  \frac{ {d}^{2}y }{d {x}^{2} }  =  \frac{ - cos \: t \: . {p}^{2}.sin \: pt  - p.cos \: pt.( - sin \: t)}{ {cos}^{2}t }  \times  \frac{dt}{dx}  \\  \\ \frac{ {d}^{2}y }{d {x}^{2} } = {y}^{''}= \frac{ - cos \: t \: . {p}^{2}.sin \: pt   +  p.cos \: pt.(  sin \: t)}{ {cos}^{2}t }  \times  \frac{1}{cos \: t}...eq2 \\  \\

Now put the values of eq1 and eq2 in the equation to prove

(1 -  {x}^{2} ) {y}^{''}  - x {y}^{'}  +  {p}^{2} y = 0 \\  \\ (1 -  {x}^{2} ) \Big(\frac{ - cos \: t \: . {p}^{2}.sin \: pt   +  p.cos \: pt.(  sin \: t)}{ {cos}^{3}t }\Big)  - x \Big(\frac{p \: cos \: pt}{cos \: t}\Big)  +  {p}^{2} y = 0 \\  \\ (1 -  {sin}^{2}t ) \Big(\frac{ - cos \: t \: . {p}^{2}.sin \: pt   +  p.cos \: pt.(  sin \: t)}{ {cos}^{3}t }\Big)  - x \Big(\frac{p \: cos \: pt}{cos \: t}\Big)  +  {p}^{2} y = 0 \\  \\  {cos}^{2} t \Big(\frac{ - cos \: t \: . {p}^{2}.sin \: pt   +  p.cos \: pt.(  sin \: t)}{ {cos}^{3}t }\Big)  - x \Big(\frac{p \: cos \: pt}{cos \: t}\Big)  +  {p}^{2} y = 0 \\  \\ \Big(\frac{ - cos \: t \: . {p}^{2}.sin \: pt   +  p.cos \: pt.(  sin \: t)}{ {cos}t }\Big)  - x \Big(\frac{p \: cos \: pt}{cos \: t}\Big)  +  {p}^{2} y = 0 \\  \\ - cos \: t \: . {p}^{2}.sin \: pt   +  p.cos \: pt.(  sin \: t) - x.p.cos \: pt +  {p}^{2} cos \: t \: y = 0 \\  \\ - cos \: t \: . {p}^{2}.y  +x.p.cos \: pt. - x.p.cos \: pt +  {p}^{2} cos \: t \: .y = 0 \\  \\ since \: all \: terms \: cancels \: each \: other \\  \\

Hope it helps you.

Similar questions