Math, asked by Anonymous, 11 months ago

if y = cos t sin 2t then,
what is dy/dt ?

explain with proper steps. ​

Answers

Answered by Sharad001
13

Question :-

 \sf{if \: y =  \cos t \:  \sin2t \:  \:  then \: find \:  \frac{dy}{dt} } \\

Answer :-

\to  \boxed{ \sf{ \frac{dy}{dt}  = 2 \cos t( \cos2t -  { \sin}^{2} t)}} \:

Explanation :-

Here we will use product rule of differentiation .

That is -

 \to \sf{ \frac{d}{d}  \: u.v = u \frac{dv}{dx}  + v \frac{du}{dx} } \\

here u and v should be function of x .

,we have

 \to  \: \sf{y =  \cos t  \:  \sin2t}

differentiate with respect to "t" on both sides

 \to \sf{ \frac{dy}{dt}   =  \cos t \frac{d}{dt}  \sin2t \:  +  \sin2t \frac{d}{dt}  \cos t} \\   \:  \\  \because \boxed{ \sf{  \frac{d}{dx}  \sin x =  \cos x \:}}  \\  \because \boxed{ \sf{  \frac{d}{dx}  \cos x =  -  \sin x}} \\  \therefore \:  \\  \to \sf{  \frac{dy}{dt}  =  \cos  t \cos 2t \:  \frac{d}{dt}2t +  \sin2t \: ( -  \sin t) } \\  \\  \to \sf{ \frac{dy}{dt}  = 2 \cos2t \cos t -  \sin t  \:  \sin2t \: } \\   \\ \because \boxed{ \sin2 \theta = 2 \sin \theta \cos \theta \: }

 \therefore \\   \to \sf{ \frac{dy}{dt}  = 2 \cos2t \:  \cos t \:  - 2 \cos t \:  { \sin}^{2} t \: } \\  \\  \to  \boxed{ \sf{ \frac{dy}{dt}  = 2 \cos t( \cos2t -  { \sin}^{2} t)}}

Answered by Anonymous
0

Answer:

yo chets how r u? long time no see

Similar questions