If y =cosx-sinx/cosx+sinx . Show that dy/dx +y^2+1=0
Answers
Answered by
29
y =(cosx -sinx )/(cosx +sinx )
={cosx/cosx -sinx/cosx}/{cosx/cosx+sinx/cosx}
= ( 1 - tanx )/(1 +tanx)
y =(1 - tanx )/(1 +tanx)
now, differentiate wrt x
dy/dx = (1+tanx).{d(1-tanx)/dx} -(1-tanx){d(1+tanx)/dx}/(1+tanx)^2
={(1+tanx)(-sec^2x)-(1-tanx)(sec^2x) }/(1+tanx)^2
= {-2sec^2x}/(1+tanx)^2
=-2(1+tan^2)/(1+tanx)^2
=-{(1+tanx)^2+(1-tanx)^2}/(1+tanx)^2
=-(1+tanx)^2/(1+tanx)^2 -(1-tanx)^2/(1+tanx)^2
= -1 - y^2
dy/dx = -y^2 -1
dy/dx + y^2 +1 =0
//// hence proved ////
={cosx/cosx -sinx/cosx}/{cosx/cosx+sinx/cosx}
= ( 1 - tanx )/(1 +tanx)
y =(1 - tanx )/(1 +tanx)
now, differentiate wrt x
dy/dx = (1+tanx).{d(1-tanx)/dx} -(1-tanx){d(1+tanx)/dx}/(1+tanx)^2
={(1+tanx)(-sec^2x)-(1-tanx)(sec^2x) }/(1+tanx)^2
= {-2sec^2x}/(1+tanx)^2
=-2(1+tan^2)/(1+tanx)^2
=-{(1+tanx)^2+(1-tanx)^2}/(1+tanx)^2
=-(1+tanx)^2/(1+tanx)^2 -(1-tanx)^2/(1+tanx)^2
= -1 - y^2
dy/dx = -y^2 -1
dy/dx + y^2 +1 =0
//// hence proved ////
abhi178:
now see answer
Answered by
0
Step-by-step explanation:
the photograph has whole process done in it
Attachments:
Similar questions