If y=e^bx cos a x show that dy²/dx² -2b dv/dx + (a+b²)y=0
Answers
Answered by
1
Answer:
y=e^bx cos a x
or, dy/dx= be^bx cos a x-ae^bx sin a x
or, d^2y/dx^2 =b^2 e^bx cos a x- bae^bx sin a x-ab e^bx sin a x-a^2e^bx cos a x
Now,
dy²/dx² -2b dy/dx + (a+b²)y
=(b^2 e^bx cos a x- bae^bx sin a x-ab e^bx sin a x-a^2e^bx cos a x)-2b(be^bx cos a x-ae^bx sin a x)+(a+b^2)e^bx cos a x
=b^2 e^bx cos a x- bae^bx sin a x-ab e^bx sin a x-a^2e^bx cos a x-2b^2 e^bx cos a x+2bae^bx sin a x+(a+b^2)e^bx cos a x
=b^2 e^bx cos a x-a^2e^bx cos a x-2b^2 e^bx cos a x+(a+b^2)e^bx cos a x
=b^2 e^bx cos a x-a^2e^bx cos a x-2b^2 e^bx cos a x+ae^bx cos a x+b^2e^bx cos a x
=0
Hence,dy²/dx² -2b dv/dx + (a+b²)y=0,[proved]
Similar questions