Math, asked by tanishkajadhav982, 3 months ago

If y=e log_(e) 5x + e log_(e) 7x then dy/dx =

a) 12
b) 5
c) 7
d) e^12x​

Attachments:

Answers

Answered by Kgorasiya15
1

Answer:

Answer is e^12x of the questions

Answered by mathdude500
7

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{ \red{\bf{ {e}^{ log_{e}(x)}  = x}}}

\boxed{ \red{\bf{\dfrac{d}{dx}x = 1 }}}

\boxed{ \red{\bf{\dfrac{d}{dx}k \: f(x) = k \: \dfrac{d}{dx}f(x)}}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  {e}^{ log_{e}(5x)} + {e}^{ log_{e}(7x)}

\rm :\longmapsto\:y = 5x + 7x

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \because \: \boxed{ \pink{\bf{{e}^{ log_{e}(x)} = x}}}

\rm :\longmapsto\:y = 12x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y = \dfrac{d}{dx}12x

\rm :\longmapsto\:\dfrac{dy}{dx}= 12\dfrac{d}{dx}x

\rm :\longmapsto\:\dfrac{dy}{dx} = 12 \times 1

\bf\implies \:\dfrac{dy}{dx} = 12

\boxed{ \red{\bf{Hence,  \: Option  \: (a) \: is \: correct}}}

Additional Information :-

\boxed{ \blue{\bf{\dfrac{d}{dx}logx = \dfrac{1}{x} }}}

\boxed{ \blue{\bf{\dfrac{d}{dx} {e}^{x}  =  {e}^{x}}}}

\boxed{ \blue{\bf{\dfrac{d}{dx} {a}^{x}  =  {a}^{x} log(a) }}}

\boxed{ \blue{\bf{\dfrac{d}{dx}sinx  =  cosx}}}

\boxed{ \blue{\bf{\dfrac{d}{dx}cosx  =   - sinx}}}

\boxed{ \blue{\bf{\dfrac{d}{dx}cosecx  =   - cosecx \: cotx}}}

\boxed{ \blue{\bf{\dfrac{d}{dx}secx  =   secx \: tanx}}}

Similar questions