Math, asked by neelam745, 1 year ago

If y=e^mtan⁻¹x,prove(1+x² )y₂+(2x-m)y₁=0

Answers

Answered by MaheswariS
2

Answer:

\bf\:(1+x^2)y_2+y_1(2x-m)=0

Step-by-step explanation:

If y=e^mtan⁻¹x,prove(1+x² )y₂+(2x-m)y₁=0

y=e^{m\:tan^{-1}x}

Differentiate with respect to x

y_1=e^{m\:tan^{-1}x}(m\frac{1}{1+x^2})

y_1=y(\frac{m}{1+x^2})

\implies\:(1+x^2)y_1=my

differentiate with respect to x once again

(1+x^2)y_2+y_1(2x)=my_1

(1+x^2)y_2+y_1(2x)-my_1=0

\implies\boxed{\bf\:(1+x^2)y_2+y_1(2x-m)=0}

Similar questions