Math, asked by goldysingh2258, 1 year ago

if y =e*+y prove that dy/dx=y/1_y​

Answers

Answered by FelisFelis
2

Answer:

The given expression is y=e^{x+y}

differentiate the above with respect to 'x'

\frac{dy}{dx}=\frac{dy}{dx}e^{x+y}

since, \frac{dy}{dx}e^{x+y}=e^{x+y}(1+\frac{dy}{dx})

\frac{dy}{dx}=e^{x+y}(1+\frac{dy}{dx})

\frac{dy}{dx}=e^{x+y}+e^{x+y}\frac{dy}{dx}

subtract both the sides by e^{x+y}\frac{dy}{dx}

\frac{dy}{dx}-e^{x+y}\frac{dy}{dx}=e^{x+y}+e^{x+y}\frac{dy}{dx}

\frac{dy}{dx}(1-e^{x+y})=e^{x+y}

since,  y=e^{x+y}

\frac{dy}{dx}(1-y)=y

divide both the sides by (1-y)

\frac{dy}{dx}=\frac{y}{1-y}

hence proved.

Similar questions