If y = eax than x. dy/dy =
Attachments:
Answers
Answered by
3
EXPLANATION.
If y = eᵃˣ.
As we know that,
Taking log on both sides of the equation, we get.
⇒ ㏒(y) = ㏒(eᵃˣ).
Differentiate w.r.t x, we get.
⇒ ㏒(y) = ax.
⇒ 1/y. dy/dx = a.
⇒ dy/dx = a. y.
⇒ dy/dx = a(eᵃˣ).
Multiply both sides of the equation with x, we get.
⇒ x. dy/dx = a(eᵃˣ)(x).
⇒ x. dy/dx = axy.
Option [C] is the correct answer.
MORE INFORMATION.
(1) = d(constant)/dx = 0.
(2) = d(ax)/dx = a.
(3) = d(xⁿ)/dx = nxⁿ⁻¹.
(4) = d(eˣ)/dx = eˣ.
(5) = d(aˣ)/dx = aˣ㏒(a).
(6) = d(㏒ x)/dx = 1/x.
(7) = d(㏒_a x)/dx = 1/x㏒(a).
Similar questions