Math, asked by keoyo, 2 months ago

if y=f(x^3) and f'(x)=e^5x, find dy/dx

please answer asap !​

Attachments:

Answers

Answered by rishu6845
2

Step-by-step explanation:

 {f}^{1} (x) =  {e}^{5x}  \\  \displaystyle \int {f}^{1} (x) \: dx =  \displaystyle \int \:  {e}^{5x} dx \\f(x) \:  =  \dfrac{ {e}^{5x} }{5}  + c \\ y = f( {x}^{3} ) \\ y =  \dfrac{ {e}^{5 {x}^{3} } }{ 5}  + c \\ differentiating \: with \: respect \: to \: x \\  \frac{dy}{dx}  =  \dfrac{1}{5}  {e}^{5 {x}^{3} }  \frac{d}{dx} (5 {x}^{3} ) + 0 \\  =  \dfrac{1}{5}  {e}^{5 {x}^{3} } (15 {x}^{2} ) \\  = 3 {e}^{5 {x}^{3} }  {x}^{2}

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:y = f( {x}^{3})

and

\rm :\longmapsto\:f'(x) =  {e}^{5x}

Now, As

\rm :\longmapsto\:f'(x) =  {e}^{5x}

\bf\implies \:\:f'( {x}^{3} ) =  {e}^{5 {x}^{3} }  -  -  -  - (1)

Now, Consider

\rm :\longmapsto\:y = f( {x}^{3})

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx}  f( {x}^{3})

\rm :\longmapsto\:\dfrac{dy}{dx}  = f'( {x}^{3})\dfrac{d}{dx}  {x}^{3}

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}  {x}^{n} =  {x}^{n - 1} \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx}  = f'( {x}^{3}) \times 3{x}^{2}

\rm :\longmapsto\:\dfrac{dy}{dx}  =  3{x}^{2} {e}^{ {5x}^{3} } \:  \:  \:  \:  \:  \:  \{using \: (1) \}

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{dy}{dx}  =  3{x}^{2} {e}^{ {5x}^{3} } \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions