Math, asked by krish2286, 11 months ago

If y=log √1-sinx/1+sinx then dy/dx =

Answers

Answered by MaheswariS
18

\textbf{Given:}

\mathsf{y=log\sqrt{\dfrac{1-sinx}{1+sinx}}}

\textbf{To find:}

\mathsf{\dfrac{dy}{dx}}

\textbf{Solution:}

\textbf{Concept used:}

\mathsf{Consider,}

\mathsf{y=log\sqrt{\dfrac{1-sinx}{1+sinx}}}

\mathsf{y=log\left(\dfrac{1-sinx}{1+sinx}\right)^\frac{1}{2}}

\mathsf{y=\dfrac{1}{2}log\left(\dfrac{1-sinx}{1+sinx}\right)}

\mathsf{y=\dfrac{1}{2}[log(1-sinx)-log(1+sinx)]}

\textsf{Differentiate with respect to 'x'}

\mathsf{\dfrac{dy}{dx}=\dfrac{1}{2}\left[\dfrac{1}{1-sinx}(-cosx)-\dfrac{1}{1+sinx}(cosx)\right]}

\mathsf{\dfrac{dy}{dx}=\dfrac{-cosx}{2}\left[\dfrac{1}{1-sinx}+\dfrac{1}{1+sinx}\right]}

\mathsf{\dfrac{dy}{dx}=\dfrac{-cosx}{2}\left(\dfrac{1+sinx+1-sinx}{(1-sinx)(1+sinx)}\right)}

\mathsf{\dfrac{dy}{dx}=\dfrac{-cosx}{2}\left(\dfrac{2}{1-sin^2x}\right)}

\mathsf{\dfrac{dy}{dx}=\dfrac{-cosx}{2}\left(\dfrac{2}{cos^2x}\right)}

\mathsf{\dfrac{dy}{dx}=\dfrac{-1}{cosx}}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=-secx}}

\textbf{Find more:}

Similar questions