Math, asked by jaisahu3999, 1 year ago

If y=log root over 1+tanx/1-tanx, prove that dy/dx =sec2x

Answers

Answered by singhanchal979p7tbi8
42
heyaa..here is the solution of ur question if u get it thnk me later if u don't thn inbox me I'll explain uh there..or solve these question again if u r not able to understand wht i have written...
Attachments:
Answered by guptasingh4564
17

proved that  \frac{dy}{dx} =sec2x

Step-by-step explanation:

Given;

y=log\sqrt{\frac{1+tanx}{1-tanx} }

Differentiate above equation with respect to x,

  \frac{dy}{dx} =\frac{1}{dx} log\sqrt{\frac{1+tanx}{1-tanx} }

\frac{dy}{dx} =\frac{1}{\sqrt{\frac{1+tanx}{1-tanx} } } \frac{1}{dx}\sqrt{\frac{1+tanx}{1-tanx} }

\frac{dy}{dx} =\frac{1}{\sqrt{\frac{1+tanx}{1-tanx} } }\times\frac{1}{2\sqrt{\frac{1+tanx}{1-tanx} } }\times \frac{2sec^{2}x }{(1-tanx)^{2} }

\frac{dy}{dx} =\frac{1}{2} \sqrt{\frac{1-tanx}{1+tanx} } \times \sqrt{\frac{1-tanx}{1+tanx} } \times \frac{2sec^{2}x }{(1-tanx)^{2} }

\frac{dy}{dx} =\frac{1}{2} \times\frac{1-tanx}{1+tanx} } \times \frac{2sec^{2}x }{(1-tanx)^{2} }

\frac{dy}{dx} =\frac{1}{1+tanx} } \times \frac{sec^{2}x }{(1-tanx) }

\frac{dy}{dx} =\frac{sec^{2}x }{(1-tan^{2} x) }

\frac{dy}{dx} =\frac{\frac{1}{cos^{2}x}} {(1-\frac{sin^{2}x }{cos^{2}x } ) }

\frac{dy}{dx} =\frac{1}{cos^{2}x-sin^{2} x }

\frac{dy}{dx} =\frac{1}{cos2x}

\frac{dy}{dx} =sec2x

So proved that  \frac{dy}{dx} =sec2x

Similar questions