Math, asked by kavya9679, 1 month ago

If y=log (secx+tanx)then dy/dx is equal to

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = log[secx + tanx]

On differentiating both sides, w. r. t . x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} log[secx + tanx]

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}logx =  \frac{1}{x} \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{secx + tanx} \: \dfrac{d}{dx}[secx + tanx]

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}(u + v) = \dfrac{d}{dx} u+ \dfrac{d}{dx}v \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{secx + tanx} \: \bigg[\dfrac{d}{dx}secx + \dfrac{d}{dx}tanx\bigg]

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}tanx =  {sec}^{2}x}} \:  \: and \:  \: \boxed{ \tt{ \: \dfrac{d}{dx}secx = secxtanx}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{secx + tanx} \: \bigg[secx \: tanx +  {sec}^{2}x \bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{secx + tanx} \: secx\bigg[ \: tanx +  {sec}^{}x \:  \bigg]

\bf\implies \:\boxed{ \tt{ \: \dfrac{dy}{dx} = secx \:  \: }}

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by MrImpeccable
45

ANSWER:

Given:

  • y = log(sec x + tan x)

To Find:

  • dy/dx

Solution:

We are given that,

\implies y=\log(\sec x+\tan x)

Taking derivative of y,

\implies\dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\log(\sec x+\tan x)\bigg)

We know that, by Chain Rule,

\hookrightarrow[f(g(x))]'=f'g(x)\times g'(x)

So, on applying Chain Rule,

\implies\dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\log(\sec x+\tan x)\bigg)

\implies\dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\log(\sec x+\tan x)\bigg)\times\dfrac{d}{dx}\bigg(\sec x+\tan x\bigg)\times\dfrac{d}{dx}\bigg(x\bigg)

\implies\dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\log(\sec x+\tan x)\bigg)\times\left(\dfrac{d}{dx}(\sec x)+\dfrac{d}{dx}(\tan x)\right)\times\dfrac{d}{dx}\bigg(x\bigg)

We know that,

\hookrightarrow\dfrac{d}{dx}\log(x)=\dfrac{1}{x}

\hookrightarrow\dfrac{d}{dx}\sec x=\sec x \tan x

\hookrightarrow\dfrac{d}{dx}\tan x=\sec^2x

\hookrightarrow\dfrac{d}{dx} x=1

So,

\implies\dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\log(\sec x+\tan x)\bigg)\times\left(\dfrac{d}{dx}(\sec x)+\dfrac{d}{dx}(\tan x)\right)\times\dfrac{d}{dx}\bigg(x\bigg)

\implies\dfrac{dy}{dx}=\dfrac{1}{\sec x+\tan x}\times\left(\sec x\tan x+\tan^2x\right)\times1

\implies\dfrac{dy}{dx}=\dfrac{\sec x\tan x+\sec^2x}{\sec x+\tan x}

Taking sec x common in numerator,

\implies\dfrac{dy}{dx}=\dfrac{\sec x(\tan x+\sec x)}{\sec x+\tan x}

\implies\dfrac{dy}{dx}=\dfrac{\sec x(\sec x+\tan x)}{(\sec x+\tan x)}

Cancelling (sec x + tan x),

\implies\dfrac{dy}{dx}=\dfrac{\sec x}{1}

Hence,

\implies\bf\dfrac{dy}{dx}=sec\,x

Similar questions