Math, asked by tiwarisakshi2004, 3 months ago

if y= log [sqrt 1-cos(3x/2)/1=cos(3x/2)] find dy/dx

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,,

y =  log(  \sqrt{\frac{1 -  \cos( \frac{3x}{2} ) }{1 +  \cos( \frac{3x}{2} ) }} )

y =  log(  \sqrt{\frac{2 \sin^{2} ( \frac{3x}{4} )  }{2 \cos ^{2} ( \frac{3x}{4} )  }} )

 \implies \: y =  log(  \frac{ \sin( \frac{3x}{4} )  }{ \cos ( \frac{3x}{4} )  } )

 \implies \: y =  log(  \tan( \frac{3x}{4} ) )

 \implies \frac{dy}{dx} = \frac{3}{4} .  \frac{1}{ \tan( \frac{3x}{4} ) } . \sec^{2} ( \frac{3x}{4} )   \\

 \implies \frac{dy}{dx} = \frac{3}{4} . \cot( \frac{3x}{4} )  . \sec^{2} ( \frac{3x}{4} )   \\

 \implies \frac{dy}{dx} = \frac{3}{4 \sin( \frac{3x}{4} )  \cos( \frac{3x}{4} ) }    \\

 \implies \frac{dy}{dx} = \frac{3}{2 \sin( \frac{3x}{2} ) }    \\

 \implies \frac{dy}{dx} = \frac{3}{2 }\cosec( \frac{3x}{2} )    \\

Similar questions