Math, asked by AnkurDeka, 2 months ago

if y= log{x+√(x²+1)} prove that (x²+1)y+xy=0

Answers

Answered by mathdude500
3

Appropriate Question :-

\rm :\longmapsto\:y = log\bigg(x +  \sqrt{ {x}^{2} + 1} \bigg)

Prove that

\bf\longmapsto \:( {x}^{2} + 1)y_2 + xy_1 = 0

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y = log\bigg(x +  \sqrt{ {x}^{2} + 1} \bigg)

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx} log\bigg(x +  \sqrt{ {x}^{2} + 1} \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  + 1}}\dfrac{d}{dx}\bigg(x +  \sqrt{ {x}^{2}  + 1} \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  + 1}}\bigg(1 +  \dfrac{1}{2 \sqrt{ {x}^{2}  + 1} } \dfrac{d}{dx}\sqrt{ {x}^{2}  + 1} \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  + 1}}\bigg(1 +  \dfrac{1}{ 2\sqrt{ {x}^{2}  + 1} } 2x \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  + 1}}\bigg(1 +  \dfrac{x}{ \sqrt{ {x}^{2}  + 1} } \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{x +  \sqrt{ {x}^{2}  + 1}}\bigg(\dfrac{ \sqrt{ {x}^{2} + 1 }  + x}{ \sqrt{ {x}^{2}  + 1} } \bigg)

\bf\implies \:y_1 = \dfrac{1}{ \sqrt{ {x}^{2}  + 1} }

\rm :\longmapsto\: \sqrt{ {x}^{2}  + 1}  \: y_1 = 1

On squaring both sides, we get

\rm :\longmapsto\: ({x}^{2}  + 1) \:  {y_1}^{2}  = 1

Now, Differentiate both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}({x}^{2}  + 1) \:  {y_1}^{2}  = \dfrac{d}{dx}1

\rm :\longmapsto\:  {y_1}^{2} \dfrac{d}{dx}({x}^{2}  + 1) \:  + ( {x}^{2} + 1) \dfrac{d}{dx} {y_1}^{2}  = 0

\rm :\longmapsto\: {y_1}^{2}(0 + 2x) + ( {x}^{2}  +1 )2y_1y_2 = 0

\rm :\longmapsto\: {y_1}^{2}(2x) + ( {x}^{2}  +1 )2y_1y_2 = 0

\bf\implies \:( {x}^{2} + 1)y_2 + xy_1 = 0

Hence, Proved

Formula Used :-

\rm :\longmapsto\:\dfrac{d}{dx}logx =  \dfrac{1}{x}

\rm :\longmapsto\:\dfrac{d}{dx}k = 0

\rm :\longmapsto\:\dfrac{d}{dx}x = 1

\rm :\longmapsto\:\dfrac{d}{dx} \sqrt{x}  =  \dfrac{1}{2 \sqrt{x} }

\rm :\longmapsto\:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}

\rm :\longmapsto\:\dfrac{d}{dx}y = y_1

\rm :\longmapsto\:\dfrac{d}{dx}y_1 = y_2

\rm :\longmapsto\:\dfrac{d}{dx}u.v \:  =  \: u\dfrac{d}{dx}v \:  \:  +  \: v\dfrac{d}{dx}u

Similar questions