Science, asked by harsshu007, 4 months ago

If y=logx³ then d²y/dx² = __________​

Answers

Answered by sanjibdas734362
3

Explanation:

you is a successfully writer and author of the angle

Answered by bellss
1

Answer:

- \frac{3} { {x}^{2} ln(10) }

Explanation:

Differential principle for logarithm:

y =  log_{a}(x) \\  \frac{dy}{dx}  =  \frac{1}{x ln(a) }

If

y = log x³

y = 3 log x

y = 3 log_{10}(x)

Product differentiation formula:

y = UV

 \frac{dy}{dx}  = (u \times \frac{dv}{dx}) + (v \times \frac{du}{dx} )

Take,

u = 3 \\  \frac{du}{dx}  = 0

v =  log_{10}(x)  \\  \frac{dv}{dx}  =  \frac{1}{x ln(10) }

 \frac{dy}{dx}  = (3 \times \frac{1}{x ln(10) } ) + 0 \\  = \frac{3}{x ln(10) }  \\  = \frac{3 {x}^{ - 1} }{ ln(10) }

To get d²y/dx²:

Take,

u =  \frac{3}{ ln(10) }  \\  \frac{du}{dx}  = 0

v =  {x}^{ - 1}  \\  \frac{dv}{dx}  =  -  {x}^{ - 2}  \\  =  -  \frac{1}{ {x}^{2} }

Finally,

 \frac{ {d}^{2}y}{d {x}^{2} }  = (\frac{3} { ln(10) } \times  -  \frac{1}{ {x}^{2} } ) + 0 \\  =  - \frac{3} { {x}^{2} ln(10) }

Similar questions