Math, asked by Vijay27171, 1 year ago

If y =root of 1-x/1+x then prove that (1-x^2)dy/dx+y=0

Answers

Answered by sprao534
31
Please see the attachment
Attachments:
Answered by erinna
11

Answer:

(1-x^2)\frac{dy}{dx}+y=0

Step-by-step explanation:

Given: y=\sqrt{\frac{1-x}{1+x}}

To prove: (1-x^2)\frac{dy}{dx}+y=0

Proof:

The given equation is

y=\sqrt{\frac{1-x}{1+x}}

Squaring both sides we get

y^2=\frac{1-x}{1+x}

Differential with respect to x.

2y\frac{dy}{dx}=\frac{(1+x)\frac{d}{dx}(1-x)-(1-x)\frac{d}{dx}(1+x)}{(1+x)^2}           [\because (\frac{f}{g})'=\frac{g\cdot f'-f\cdot g'}{g^2}]

2y\frac{dy}{dx}=\frac{(1+x)(-1)-(1-x)(1)}{(1+x)^2}

2y\frac{dy}{dx}=\frac{-1-x-1+x}{(1+x)^2}

2y\frac{dy}{dx}=\frac{-2}{(1+x)^2}

Divide both sides by 2y.

\frac{dy}{dx}=\frac{\frac{-2}{(1+x)^2}}{2y}

\frac{dy}{dx}=-\frac{1}{y(1+x)^2}

We need to prove

(1-x^2)\frac{dy}{dx}+y=0

Taking LHS,

LHS=(1-x^2)\frac{dy}{dx}+y

Substitute the value of \frac{dy}{dx}.

LHS=(1-x^2)(-\frac{1}{y(1+x)^2})+y

LHS=-\frac{(1-x)(1+x)}{y(1+x)^2}+y

Cancel out the common factors.

LHS=-\frac{1-x}{y(1+x)}+y

LHS=-\frac{1}{y}\times \frac{1-x}{(1+x)}+y

LHS=-\frac{1}{y}\times y^2+y           [\because y^2=\frac{1-x}{(1+x)}]

Cancel out the common factors.

LHS=-y+y

LHS=0

LHS=RHS

Hence proved.

Similar questions