Math, asked by mcdyno16, 27 days ago

if y=sin-¹[5x+12√1-x²/13] , dy/dx =...?​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg[\dfrac{5x + 12 \sqrt{1 -  {x}^{2} } }{13} \bigg]

Let we use method of Substitution to evaluate this to simplest form.

Let Substitute

 \red{\rm :\longmapsto\:x = sin \theta \: }

So, above expression can be rewritten as

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg[\dfrac{5sin\theta  + 12 \sqrt{1 -  {sin}^{2} \theta } }{13} \bigg]

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg[\dfrac{5sin\theta  + 12 \sqrt{ {cos}^{2} \theta } }{13} \bigg]

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg[\dfrac{5sin\theta  + 12cos\theta  }{13} \bigg]

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg[\dfrac{5}{13}sin\theta  + \dfrac{12}{13}cos\theta \bigg]

Let further assume that

 \red{\rm :\longmapsto\:\dfrac{5}{13} = cos \alpha }

 \red{\rm\implies \:\dfrac{12}{13} = sin \alpha }

So,

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg(sin\theta cos \alpha  + sin \alpha cos\theta \bigg)

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg(sin(\theta +  \alpha )  \bigg)

\rm :\longmapsto\:y = \theta  +  \alpha

\rm :\longmapsto\:y =  {sin}^{ - 1}x +  \alpha

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}[ {sin}^{ - 1}x +  \alpha ]

\rm\implies \:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{1 -  {x}^{2} } }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions