Physics, asked by sadiahasan1919, 7 months ago

if y=sin (4x+2π/3)then the value of dy/dx is

Answers

Answered by BrainlyIAS
31

\sf y=sin\bigg(4x+\dfrac{2\pi}{3}\bigg)

Differentiate with respect to x on both sides ,

\to \sf \dfrac{dy}{dx}=\dfrac{d}{dx}\bigg[sin\bigg(4x+\dfrac{2\pi}{3}\bigg)\bigg]

  • d/dx ( sin x ) = cos x

\sf \to \dfrac{dy}{dx}=cos\bigg(4x+\dfrac{2\pi}{3}\bigg)\dfrac{d}{dx}\bigg(4x+\dfrac{2\pi}{3}\bigg)

  • d/dx ( constant ) = 0

\to \sf \dfrac{dy}{dx}=cos\bigg(4x+\dfrac{2\pi}{3}\bigg)(4)\\\\\leadsto \sf \pink{\dfrac{dy}{dx}=4.cos\bigg(4x+\dfrac{2\pi}{3}\bigg)}\ \; \bigstar

More Info :

  • d/dx ( sin x ) = cos x
  • d/dx ( cos x ) = - sin x
  • d/dx ( tan x ) = sec²x
  • d/dx ( cot x ) = - csc²x
  • d/dx ( sec x ) = sec x . tan x
  • d/dx ( csc x ) = - csc x . cot x
Similar questions